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Abstract— A simple functional expression giving multiple
geometries is important for the kinematics of a smooth-surfaced
robot. Such a representation gives the functions of tangent
vectors and Jacobian matrices and reduces the computational
time of forward and inverse kinematics. In this paper, we
construct the kinematics of robotic surfaces using an equation
for rotational surfaces called the Kenmotsu-type representation
formula. The formulas in this paper switch between various
nonzero constant mean curvature surfaces, namely, spheres,
cylinders, unduloids, and nodoids. Forward kinematics and
numerical simulations confirm the short computation time of
these formulas; moreover, the local coordinate system on the
robot is a Cartesian coordinate system. We also present an
iterative algorithm for inverse kinematics based on the Newton–
Raphson method.

I. INTRODUCTION

For many years, scientists have mathematically and physi-
cally investigated the shape of living organisms and physical
phenomena and their deformations. Recently, many attempts
have been made to control the deformation of an object’s
shape. For example, words such as “active printed material”
[1] and “morphing” [2] are trending. Research on so-called
robotic surfaces has also emerged in robotics [3][4]. Differ-
ent control targets in different fields must solve the same
problems related to surface-control technology; therefore,
constructing such technology is important. The present study
focuses on robotic surfaces.

The space composed of variables controlled by a robotic
surface is called the actuator space, whereas the space
composed of the realizable positions and postures on a
point or shape of the robot to be controlled is called the
task space. Robotic control requires transformation between
the two spaces, but a direct transformation does not find
the commonalities between robots with different structures.
A configuration space consisting of geometric variables of
surfaces should be established as an intermediate space
between the two spaces. The transformation between the
configuration and task spaces is considered to be common
to any robotic surface.

However, when a robotic surface deforms under shear,
two major problems prevent the construction of control
theory. First, a surface representation requires six geometric
parameters, which are the first and second fundamental quan-
tities [5], and they must satisfy the integrability condition.
Second, a shear deformation transforms the local coordinate
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Fig. 1. Generatrix for H = 1.

system of the robot to an oblique coordinate system, which
cannot be directly treated with conventional robotics theory
based on the Cartesian coordinate system. To solve these
problems, we must find a surface model with the following
characteristics: (i) describable with few parameters, (ii) can
represent multiple geometrical shapes, and (iii) ensures that
the local coordinate system on the model is an orthogonal
coordinate system.

Here, we propose a surface model possessing with these
three characteristics and consider its forward and inverse
kinematics. The kinematics have a short computational time
and can directly utilize the formulation of rigid-body robot
kinematics.

II. EQUATION OF ROTATIONAL SURFACES

The Kenmotsu-type representation formula, first derived
by Kenmotsu [6], is an equation for rotational surfaces with
a mean curvature of a given function. After applying a coor-
dinate transformation to this formula, we obtain an equation
for a surface with isothermic coordinates and constant mean
curvature.

A. Kenmotsu-type Representation Formula

A rotational surface is described by p(ū, v̄) =
[f(ū) cos v̄, f(ū) sin v̄, g(ū)]T , where ū is the arc length pa-
rameter of a generatrix (f(ū), g(ū)) of the rotational surface.
For a function H(ū) defined on an interval, the generatrix
with mean curvature H(ū) is given by

f(ū) =
√
(V − c1)2 + (W + c2)2

g(ū) =

∫ ū

0

(W + c2)V
′ − (V − c1)W

′√
(V − c1)2 + (W + c2)2

du,
(1)



where the functions V and W are respectively defined as

V (ū) =

∫ ū

0

sin

(
2

∫ u

0

H(t)dt

)
du

W (ū) =

∫ ū

0

cos

(
2

∫ u

0

H(t)dt

)
du.

The prime symbol denotes partial differentiation by ū. Eq.
(1) is called the Kenmotsu-type representation formula and
c1 and c2 are real numbers.

Assuming H ̸= 0, the functions V and W are

V (ū) =
1

2H
(1− cos(2Hū)), W (ū) =

1

2H
sin(2Hū),

respectively. Using the above expressions and the incomplete
elliptic integrals of Types 1 and 2, given by

F (k, φ) =

∫ φ

0

dθ√
1− k2 sin2 θ

E(k, φ) =

∫ φ

0

√
1− k2 sin2 θ dθ,

respectively, we obtain the following equation [7]:

f(ū) = β

√
1− γ2 sin2(Hū)

g(ū) = αF (γ,Hū) + βE(γ,Hū),
(2)

where

α =
1−B

2H
, β =

1 +B

2H
, and γ =

2
√
B

1 +B
.

Here, the variables B determines the geometric shape.

B =
√
(2c1H − 1)2 + (2c2H)2

ū in Eq. (2) is the shift of ū in Eq. (1) by a specific value.
The curves for H = 1 generated by Eq. (2) are shown in
Fig. 1.

B. Coordinate Transformation

A rotational surface p(ū, v̄) obtained using Eq. (2) is
not an isothermal coordinate system because ∥∂p/∂ū∥ ̸=
∥∂p/∂v̄∥. If a local coordinate system is a Cartesian coordi-
nate system at all points of a robot, it must be an isothermal
coordinate system. Therefore, we apply the following coor-
dinate transformation:

u =
1

ℓ

∫ ū

0

√
f ′(u)2 + g′(u)2

f(u)
du, v =

1

ℓ
v̄

when ℓ represents the elongation of the robot. Substituting
the above inverse function into Eq. (2), we obtain

f(ℓu) = β dn(γ, βH ℓu)

g(ℓu) = αβH ℓu+ βE (γ, βH ℓu),

where the functions dn and E respectively denote the dn
function (a Jacobi elliptic function) and the Jacobi epsilon
function. If the amplitude of u = F (k, φ), defining the
incomplete integral of the 1st kind, is φ = am(k, u) =
F−1(k, u), then dn and E are respectively given by:

dn(k, u) =

√
1− k2 sin2 (am(k, u))

E (k, u) = E(k, am(k, u)).
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Fig. 2. Surface shapes when ℓ = 1 in Eq. (3).

Finally, setting

p =


f(ℓu) cos(ℓv)− f(0)

sgn(H) f(ℓu) sin(ℓv)

sgn(H) (g(ℓu)− g(0))

 , (3)

we have ∥∂p/∂u∥ = ∥∂p/∂v∥ = β2 dn2(γ, βHℓu); that is,
p is an isothermal coordinate system. Note that ∂p/∂v has
no value in the z−direction.

In the following, we assume that the mean curvature is
positive (H > 0).

When B = 0, p = 1/(2H)[cos(ℓv), sin(ℓv), ℓu]T ,
which describes a cylindrical surface. When B = 1, p =
1/H[cos(ℓv) sech(ℓu), sin(ℓv) sech(ℓu), tanh(ℓu)]T , which
describes a spherical surface. When 0 < B < 1 and B > 1,
the surface is called an unduloid and a nodoid, respectively.
Fig. 2 shows the surface shapes given by Eq. (3) with
B = 0 (cylinder), 0.4 (unduloid), 1.0 (sphere), and 1.5
(nodoid). In these drawings, the range of (u, v) was set to
u = [0, π/2], v = [0, π/2] and ℓ was set to 1.

The mean curvature H controls the bending quantity of
the surface. In Fig. 2, the mean curvatures H of the green,
black, red, and blue surfaces are 0.5, 0.75, 1.0, and 1.25,
respectively. For reference, a circle with radius 1/H is shown
in the x−y plane of each case. Note that the mean curvature
of a sphere is the reciprocal of the sphere’s radius and
the edges of the surface are circles (Fig. 2(c)). The mean
curvature of a cylinder is one-half the inverse of the radius,
so the surface edge of H = 0.5 in Fig. 2(a) follows a circle
of radius 1.

From Fig. 2, we observe that the surface size increases
with decreasing mean curvature. As the mean curvature
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Fig. 3. Surface shapes when ℓ is set to give π/2 as the edge length of
u = 0.

approaches zero, the surface becomes enormously large,
which is inappropriate for a bending robot. Therefore, the
elongation rate ℓ is controlled to prevent such expansion. As
an example, Fig. 3 shows the results of setting the elongation
rate as

ℓ =
π

2

/∫ π/2

0

∥pv∥dv (4)

which constrains the length of the u = 0 edge of the surface
to π/2. In all geometries, the shape approaches a plane as
H decreases, preventing excessive expansion. This construct
appears to represent the natural deformation of a bending
robot.

III. FORWARD KINEMATICS

Forward kinematics gives the position and orientation
of an arbitrary point on a surface in the base coordinate
system. Both the position and orientation can be obtained
from the homogeneous transformation matrix between the
base coordinate system and a coordinate system described
at each point. Let the tangent vectors be pu = ∂p/∂u and
pv = ∂p/∂v, and the unit normal vector be n = (pu ×
pv)/∥pu×pv∥. Now place a coordinate system consisting of
two unit tangent vectors and a normal vector on the surface.
As p is a function, both pu and pv can also be expressed as
functions. The homogeneous transformation matrix between
the base coordinate system and the coordinate system at a
point can be expressed as

bT (u, v) =

sgn(H) pu

∥pu∥ sgn(H) pv

∥pv∥ n p

0 0 0 1

 . (5)
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Fig. 4. Computational times of forward kinematics of 625 points on the
surface, performed for 100 (B,H) pairs.

A. Numerical Simulations

The forward kinematics include approximate computations
of elliptic integrals and elliptic functions. As inverse kine-
matics require the repeated computation of forward kinemat-
ics, their computational time depends on that of the forward
kinematics. Additionally, forward kinematics must realize a
Cartesian coordinate system at any point on the robot. Hence,
we investigated the time requirements of forward kinematics
and the realization of an orthogonal coordinate systems.

The numerical simulations were conducted in MATLAB
R2019a. The dn function was computed using MATLAB’s
ellipj function. To compute the Jacobi epsilon function, we
require an am function and an incomplete integral of the 2nd
kind. The am function was computed as am = tan−1(sn/cn)
using the values of the sn and cn functions obtained by
ellipj. In the following numerical simulations, the values of
the am function lie within [−π, π] to avoid self-intersections
of the surface, and the discontinuities resulting from the
function atan2 are ignorable. The tolerance of ellipj was
set to 2.2204 × 10−16. The incomplete integrals of the 2nd
kind were solved by trapezoidal integration using the trapz
function.

We randomly generated 100 pairs of B and H , and deter-
mined ℓ by Eq. (4). For each pair of B and H , we computed
the homogeneous transformation matrices of 625 points on
the surface. The measured computational times of the for-
ward kinematics calculation are plotted in Fig. 4. Recovering
a surface from the first and second fundamental quantities
requires solving a large-scale simultaneous equation, which
typically takes more than one second. All trials in the present
case were completed within 50 milliseconds, implying that
one forward-kinematics calculation was computed within a
short time. Fig. 5 shows the surface shapes at (B,H, ℓ) =
(0.243, 1.14, 1.84) and (B,H, ℓ) = (1.49, 1.28, 1.03) and
the local coordinate systems of 16 points. The maximum
value of (pu/∥pu∥) · (pv/∥pv∥) was of the order of 10−16

and the two tangent vectors can be considered orthogonal.

IV. INVERSE KINEMATICS

Let the robot’s configuration parameters be q =
[B,H, ℓ]T . The inverse-kinematics problem is defined as
follows: Find q such that a given point (us, vs) on the
robot coincides with a given position pt ∈ R3. The error
function is denoted by epos = pt − p(us, vs), and a point
for which epos = 0 is explored by iterative computation. Let
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Fig. 5. Shapes and local coordinate systems of two surfaces obtained by
forward kinematics.
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Fig. 6. Deformations of a surface after 1, 15, 35, and 45 steps of inverse
kinematics.

the Jacobian matrix be

J(q) =
∂epos
∂q

= −
[
∂p
∂B

∂p
∂H

∂p
∂ℓ

]
(6)

and apply the Newton–Raphson method to the update law:

q := q − δJ−1epos, (7)

where δ is the step width.
The inverse kinematics algorithm first obtains p(us, vs)

using forward kinematics. It then computes the residual e.
Next, the Jacobian matrix is obtained by Eq. (6) and Eq. (7)
is calculated. We set δ = 0.1. The above process is repeated
until q satisfies e = 0. As

√
B in γ and H ̸= 0 (see Sec.

IIA), B ≥ 0 and H > 0 must be satisfied. For each step
in this simulation, we enforced the correction B = 0 when
B < 0 and H = 0.0001 when H ≤ 0.

A. Numerical Simulations

For the point (us, vs) = (π/2, π/2), we set the tar-
get point as pt = [−0.547, 1.07, 1.23]T (Condition 1),
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Fig. 7. Stepwise residuals (1A)(2A)(3A) and configuration parameters
(1B)(2B)(3B) of inverse kinematics.

pt = [−1.23, 0.480, 1.48]T (Condition 2), and pt =
[−0.755, 1.03, 0.91]T (Condition 3). In all cases, the initial
value of the configuration parameter was (1, 1, 1)T . The de-
formation results of the three inverse kinematics simulations
are shown in Fig. 6. At the upper left corner of each result
is the number of steps. The green and red spheres represent
p(us, vs) and pt, respectively, and the red line describes
the trajectory of p(us, vs). In all simulations, p(us, vs)
approached pt as the steps progressed. Panels (1A), (2A),
and (3A) of Fig. 7 show the stepwise residuals, and panels
(1B), (2B), and (3B) show the variations in the configuration
parameters under Conditions 1, 2, and 3, respectively. In
Fig. 7(1A) and (2A), the error norm gradually decreases
and p(us, vs) reaches the target position at approximately
50 steps under Conditions 1 and 2. Under both of these
conditions, the surface geometry at the 200th step was
unduloid. Under Condition 1 (Fig. 7(1B)), the geometry
became a cylinder (B = 0) before transitioning to unduloid
(B > 0). Under Condition 3, the variable B increased as
the steps progressed, converging to 4.13 after approximately
500 steps and becoming nodoid. At that time, p(us, vs)
reached the target position. Empirically, the convergence
speed appeared to slow down when the final geometry was
a nodoid. The times of computing 100 steps were 0.0921 s
under Condition 1 and 0.0775 s under Condition 2. Under
Condition 3, the time of computing 500 steps was 0.153 s.
These times are within the practical range if the robot does
not require high-speed control

V. DISCUSSION

The proposed forward kinematics is a way to avoid the
integrability condition for surfaces. The important geometric
quantities of a surface are six variables. The first fundamental
quantities E,F , and G and the second fundamental quantities



L,M , and N . The surfaces targeted herein can be repre-
sented by three variables E,L, and N out of these six vari-
ables. Given these three variables, the shape of the surface
can be reconstructed by integrating the Gauss–Weingarten
formula along the coordinate curve. The integration corre-
sponds to solving a system of simultaneous equations and
generally takes more than one second of computation time.
However, to integrate the Gauss–Weingarten formula, we
must explore E,L, and N , satisfying the integrability con-
ditions, Gauss equations and Codazzi–Mainardi equations.
The work is not trivial, and inverse kinematics based on
fundamental quantities is impractical. The proposed forward
kinematics requires Jacobi elliptic functions and incomplete
integrals of the 2nd kind, that is, integrals along curves only.
If a generatrix for a surface of revolution is obtained, then we
are guaranteed to construct a surface, allowing us to compute
fast forward and inverse kinematics.

Unfortunately, the proposed representation does not allow
for inverse kinematics on the attitude of a robot’s point.
When the rotation matrix of the attitude on point (u, v) is

R(u, v) =
[

pu

∥pu∥
pv

∥pv∥ n
]
, (8)

and the rotation matrix of the target attitude is Rd, the error
vector is taken as follows:

eatt(q) = a(RdR
T ), (9)

where a(R) is a function to compute the angle-axis vector
of a rotation matrix R. In this case, the partial derivative of
the error vector with respect to the mean curvature H is a
zero vector.

∂eatt
∂H

= 0. (10)

Note that H does not control the surface shape but only its
size. This indicates that only two of the three variables for
attitude can be controlled. Controlling the attitude requires
the addition of a new variable to Eq. （3）.

VI. CONCLUSIONS

This paper presented the forward and inverse kinematics
of a surface model using functions of rotational surfaces that
can unify the representations of cylinders, spheres, undu-
loids, and nodoids. These kinematics provide a mechanism-
independent theory between the configuration space and task
space of robotic surfaces. In future work, the proposed
inverse-kinematics algorithm should be studied in further
detail. For example, the update laws of the inverse-kinematics
algorithm for rigid-body robots use the Gauss–Newton or
Levenberg–Marquadt method [8]. By examining the details
of the algorithm, we can expect to reduce the solution time.
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