スキルアシストシステムにおける HMM を用いた 搬送作業フェーズのリアルタイム識別

 ○渡邉 真生(名古屋大学),山田 陽滋(名古屋大学),秋山 靖博(名古屋大学), 荒木崇志((株)アラキ製作所),澤田浩之((株)アラキ製作所),
 川尻治司((株)アラキ製作所),古屋敷潤((株)アラキ製作所)

Real-time Identification of Transport Task Phases Using HMM in A Skill-Assist System

Mao WATANABE (Nagoya University), Yoji YAMADA (Nagoya University),
 Yasuhiro AKIYAMA (Nagoya University), Takashi ARAKI (Araki Mfg. Co., Ltd.),
 Hiroyuki SAWADA (Araki Mfg. Co., Ltd.), Haruji KAWAJIRI (Araki Mfg. Co., Ltd.),
 and Jun FURUYASHIKI (Araki Mfg. Co., Ltd.)

Abstract : In the social context of aging and shortage of workforce at manufacturing sectors, we are developing "Skill-Assist Light," an assist system for transporting heavyweight products. The phase-dependent impedance control, which is a control method to change the mechanical impedance according to the transport task phases such as start-up, moving, and positioning, has been proposed and reported to improve the assist performance in the previous studies on power assist devices. In this study, an operational-phase-identification method using continious Hidden Markov Models for phase-dependent impedance controls is newly proposed, and demonstrated in real-time transporting operations. Firstly, the real-time phase identifying algorithm using HMM was studied. Second, the HMM model was built by training the transport experiment data. Finally, the real-time phase identification was performed in subject experiments, and the validity of the proposed method was demonstrated.

1. 緒言

自動車組立工程をはじめとする労働集約型の製造業では, 作業者の高齢化や労働力不足が問題となっている.そこで, 加齢した作業者であっても彼らの熟練した技能(スキル) を作業工程にて発揮できるよう,筆者らは人間・ロボット 協調型支援装置「スキルアシスト」を提案し[1],近年開発 を再開した [2].

スキルアシストは既に自動車の最終組立工程で稼働して おり,その有用性が明らかにされている [3].そこで,最 終組立工程だけでなく、より汎用的な搬送作業用途にも 本システムを導入できるよう、新たにパワーアシスト装置 「スキルアシストライト」(以下 SAL, Fig. 1)の開発を 行っている. 搬送作業を対象としたパワーアシスト装置で は、搬送作業中に仮想的な機械インピーダンスをアクティ ブに変化させる,可変インピーダンス制御が提案され,ア シスト性能の向上が報告されている [4, 1, 5, 6, 7, 8]. 可 変インピーダンス制御では、操作力等の変数を引数として 機械インピーダンスを連続的に変化させる手法 [5] と,作 業フェーズ(起動・移動・位置決め)等に応じて機械イン ピーダンスを切替える手法(フェーズ・インピーダンス制 御)が提案されている [1, 4, 6, 7, 8]. 本論文では, 後者の フェーズ・インピーダンス制御における、搬送作業フェー ズの識別に取り組む. 従来のフェーズ識別(あるいは機械 インピーダンスの切替え)では、装置の座標 [4],速度 [6], 加速度 [1],操作力 [7] 等の信号波形の特徴をもとにフェー ズ識別が行われてきた.また,作業フェーズの識別は作業 者の運動で決定されるという考えのもとに、奥田らは人 間の行動モデルを陽に考慮したフェーズ識別を行っており [8],池浦らは人間の随意運動モデルとして最小躍度軌道 [9] を用いた機械インピーダンスの切替えを行っている [6].

しかしながら,これらの手法ではリアルタイムに適切な 信号波形の特徴を得ることが困難であるという問題や,前 提とする行動モデルに大きく依存するという問題がある. そこで本研究では,作業フェーズ識別に装置の速度と加速 度を観測系列とする隠れマルコフモデル(HMM)[11]を

Fig. 1: Overview of Skill-Assist Light(SAL)

Fig. 2: HMM model of SAL

応用する手法を提案する.作業フェーズ識別に HMM を応 用する理由は以下の通りである.

- (1) 起動・移動・位置決め等のフェーズ遷移がマルコフ 性をもつと考えられる
- (2) フェーズを確率的に推定できるため、安定したリア ルタイムフェーズ識別が可能である
- (3) 特別な作業者モデルを必要としない
- (4) 作業の中で学習データを更新し, HMM モデルの再 推定を行うことで,フェーズ識別性能の向上が期待 できる

以上の理由から,作業フェーズ識別に HMM を応用するこ とで,より安定したフェーズ切替え性能をもつアシストシ ステムの構築が期待される.既に筆者らは,提案手法であ る HMM によるフェーズ識別の実用可能性をオフライン処 理にて確認した [2].そこで本稿では,本手法によるリアル タイムでの作業フェーズ識別手法とその識別結果について 報告する.

2. 作業フェーズのリアルタイム識別アルゴリ ズム

2.1 HMM モデルの設計

前報 [2] と同様に、本研究では、時刻 τ における SAL の 並進加速度 $\ddot{x}(\tau)$ および並進速度 $\dot{x}(\tau)$ を連続観測ベクトル o_{τ} として扱う. したがって、連続分布型 HMM を構築す る. 最終観測時刻を T として、観測ベクトル o_{τ} を式 (1) で定義する.

 $\boldsymbol{o}_{\tau} = [\dot{\boldsymbol{x}}(\tau), \ddot{\boldsymbol{x}}(\tau)]^{\mathsf{T}} \quad (0 \le \tau \le T)$ (1)

HMM モデル λ を式(2)~(5)で定義する.

$$\lambda = \{ \boldsymbol{\pi}, \boldsymbol{A}, b_j(\boldsymbol{o}) \}$$
(2)

$$b_j(\boldsymbol{o}) = \sum_{k=1}^{M} c_{jk} \mathcal{N}[\boldsymbol{o}, \boldsymbol{\mu}_{jk}, \boldsymbol{U}_{jk}]$$
(3)

Fig. 3: Transport Task

Table 1: Specifications of SAL

1	
Mass of nominal model m [kg]	401.2
Mass of a virtual mechanical	70
impedance m_{id} [kg]	
Viscosity coefficient of	56.1
nominal model $c [kg/s]$	
Viscosity of a virtual mechanical	30
impedance c_{id} [kg/s]	
Friction compensation force f_d [N]	33.0

$$\mathcal{N}[\boldsymbol{o}, \boldsymbol{\mu}_{jk}, \boldsymbol{U}_{jk}] = \frac{1}{(2\pi)^{\frac{n_o}{2}} \sqrt{\boldsymbol{U}_{jk}}} \exp\left\{-\frac{1}{2}(\boldsymbol{o} - \boldsymbol{\mu}_{jk})^{\mathsf{T}} \boldsymbol{U}_{jk}^{-1}(\boldsymbol{o} - \boldsymbol{\mu}_{jk})\right\}$$
(4)

ただし,

 $1 \le i, j \le N, \quad 1 \le k \le M \tag{5}$

 $\pi = \{\pi_i\}$ は $\tau = 0$ における初期状態確率ベクトル, $A = \{a_{ij}\}$ は状態 S_i, S_j 間の状態遷移確率行列である. $b_j(o)$ は状態 S_j において時刻 τ の連続観測ベクトルo(以下, τ を省略)を観測する際の確率密度関数であり,式(3)のようにM 個の確率密度関数Nの混合分布で与えられる.本研究では確率密度関数Nを式(4)のガウス分布として与える. c_{jk} は状態jのk番目の混合分布に対する混合重み係数, μ_{jk} は平均ベクトル, U_{jk} は分散共分散行列である. n_o は観測ベクトルの次元,Nは隠れ状態数,Mは確率密度混合分布数である.

次に、SAL の HMM 構築における各パラメータの対応を整理する. Fig. 2 に SAL における HMM モデルの概要を示す. 隠れ状態 S_i は各作業フェーズに対応する. 2 地点間の搬送作業フェーズは,起動フェーズ,移動フェーズ,位置決めフェーズの3つに分けることができる [1,8]. さらに、リアルタイムでのフェーズ識別処理の実装を考慮すると、起動フェーズの前にスタンバイ状態,位置決めフェーズの後に終了状態をそれぞれ考慮する必要がある.このため隠れ状態数 N は 5 とし、各状態 S_i , i = 1, 2, 3, 4, 5をそれぞれ S_1 :スタンバイ状態, S_2 :起動フェーズ、 S_3 :移動フェーズ、 S_4 :位置決めフェーズ、 S_5 :終了状態とする. 状態遷移確率行列 $A = \{a_{ij}\}$ につ

Fig. 4: Probability densities of Standby and completion state S_1, S_5

Fig. 5: Probability density of start-up phase S_2

いて,数字の隣り合わない状態間の遷移は行わないもの とした $(a_{ij} = 0, |i - j| > 1, 1 \le i, j \le N)$).また,2 地点間搬送作業の途中で作業を中断しないことを考える と,移動フェーズから動き出しフェーズに戻ることはな い.このため $a_{32} = 0$ とした.同様の理由で, $a_{21} = 0$ とした.初期状態確率ベクトル π について,作業は装置 が停止している状態からはじまるため,常に初期隠れ状 態はスタンバイ状態である.このため $\pi = [1, 0, 0, 0, 0]^{\mathsf{T}}$ とした.混合確率密度分布の数 M は簡単のため 1 とする $(c_{jk} = 1, k = 1, 1 \le j \le N)$.

2.2 搬送作業実験データの学習

Baum-Welch アルゴリズム [12] を用いて HMM モデル パラメータの再推定を行う. HMM モデル λ を構築するこ とのみを目的として,研究室に所属する男性 5 名(20~25 歳)に対して,前報 [2] と同様の搬送作業実験(Fig. 3)を 新たに 250 試行行い,これらを学習用データとして HMM モデルパラメータの再推定を行った. X 方向への 1.7 mの 2 地点間搬送作業について,直径 4 mm の目標点に対して 可能な限り引き戻し動作をすることなく位置合わせするこ とを作業目標として実験を行った.式(1)の観測ベクトル における x は X 方向の変位である. アシスト制御則はイ ンピーダンス制御 [1] とした.インピーダンス制御におけ るパラメータを Table 1 に示す.学習データを拡充する目

Fig. 6: Probability density of moving phase S_3

Fig. 7: Probability density of positioning phase S_4

的で, 作業スピードについては,

速度条件 1. 作業しやすい速度で作業しなさい

速度条件 2. 少し急ぎめの速度で作業しなさい

の2つの速度条件を設け,各速度条件について被験者毎に 25回の搬送作業を行い,計250試行の搬送作業データを 用意した.学習用時系列データのサンプリング周期*T_{Sl}*は 20 ms である.装置の速度,加速度はそれぞれ Fig.1中の モータに取り付けられたエンコーダ信号の差分および加速 度センサ信号から取得している.

次に、用意した学習データを用いて、Baum-Welch アル ゴリズムにて HMM パラメータの再推定を行う.ただし、 スタンバイ状態 S₁ と終了状態 S₅ については、その定義か ら、*x*-*x* 平面の原点に分布しているべきである.このため、 S₁ および S₅ の各パラメータについては下記のように試行 錯誤的に定め、Baum-Welch アルゴリズムによる数値の更 新を行わないこととした.

$$\boldsymbol{\mu}_{11} = \boldsymbol{\mu}_{51} = [0, \quad 0]^{\mathsf{T}} \tag{6}$$

$$\boldsymbol{U}_{11} = \boldsymbol{U}_{51} = \begin{bmatrix} 0.0005 & 0\\ 0 & 0.0005 \end{bmatrix}$$
(7)

Fig. 4~7 に再推定した各状態の確率密度分布を示す. Fig. 8 はフェーズ S_2, S_3, S_4 の分布を z 軸正方向から投 影した図であり,赤は S_2 ,緑は S_3 ,青は S_4 の分布をそれ ぞれ示している.学習試行データ数を増やし,隠れ状態数

Fig. 8: Probability distributions of S_2, S_3, S_4

Fig. 9: Experimental results of identifying phases without any restrictions of probability distributions

を増やした場合でも,起動フェーズ S₂,移動フェーズ S₃, 位置決めフェーズ S₄ は前報 [2] と比較してほとんど同様 の結果となった.起動フェーズ S₂ は共分散が正であり, *x* と *x*の両方が増加するフェーズであることを示している. 位置決めフェーズ S₄ は共分散が負であり,*x*が減少する と同時に *x*が増加するフェーズであることを示している.

2.3 実験による Viterbi アルゴリズムの検討

Viterbi アルゴリズム [12] をフェーズのリアルタイム識 別に応用する. 1本の最適状態系列 *q* を式 (8) で定義する.

$$\boldsymbol{q} = [q_1, q_2, \dots, q_T]^\mathsf{T} \tag{8}$$

最終時刻 T における状態 qT は式 (9) で与えられる.

$$q_T = \operatorname*{argmax}_{1 \le i \le N} [\delta_T(i)] \tag{9}$$

ここで、 $\delta_{\tau}(i)$ は1本の状態系列パス上の時刻 τ における 最も高い確率であり、式 (10) で与えられる.

$$\delta_{\tau}(i) = \max_{q_1, q_2, \dots, q_{\tau-1}} P[q_1 q_2 \dots q_{\tau-1}, q_{\tau} = i, \boldsymbol{o}_1 \boldsymbol{o}_2 \dots \boldsymbol{o}_{\tau} | \lambda]$$
(10)

本来 Viterbi アルゴリズムでは、一連の動作が終了した最 終時刻 T における状態 q_T を起点に、バックトラック処理 を行うことで最適状態系列 *q* を導出する.一方で, SAL の ようにリアルタイムに現在の隠れ状態を取得したい場合, 一連の動作中に最適状態をその都度推定する必要がある. このため,現在の時刻 *τ* における状態を式 (11) で推定す ることとした.

$$q_{\tau} = \operatorname*{argmax}_{1 \le i \le N} [\delta_{\tau}(i)] \tag{11}$$

以上の処理における作業フェーズ識別の代表的な一試行の 結果を Fig. 9 に示す. 破線は式 (11) のフェーズ識別結果, 実線はバックトラック処理のフェーズ識別結果をそれぞれ 示している. 点線は搬送の速度, 一点鎖線は加速度を示し ている. 同図から, 式 (11) を用いたリアルタイムフェー ズ識別では, t = 1.7 s にてフェーズの誤識別が発生して いることが確認できる. このとき, 速度は 0.01 m/s, 加 速度は 0.13 m/s² である. ここで Fig. 8 の分布をみると, t = 1.7 s の時刻はちょうど S_2 と S_3 の確率密度分布が重複 する領域であることが確認できる. このことから, 式(11) を用いたフェーズの誤識別は、t = 1.7 s にて作業フェーズ S4 に存在する確率が S2 よりも高いと一時的に計算された 結果であると考えられる.この不具合を改善する、すなわ ち,式(11)の結果をバックトラック処理の結果と同様に するために、本研究では Viterbi アルゴリズムで用いる確 率密度分布について次の処理を施した.

 (1) *x* に閾値を設け、S₂ と S₄ の分布が重複しないよう にする

$$b_2(\boldsymbol{o}) = \begin{cases} \mathcal{N}[\boldsymbol{o}, \boldsymbol{\mu}_{21}, \boldsymbol{U}_{21}] & (\ddot{x} > 0) \\ 0 & (\ddot{x} \le 0) \end{cases}$$
(12)

$$b_4(\boldsymbol{o}) = \begin{cases} \mathcal{N}[\boldsymbol{o}, \boldsymbol{\mu}_{41}, \boldsymbol{U}_{41}] & (\ddot{x} < 0) \\ 0 & (\ddot{x} \ge 0) \end{cases}$$
(13)

(2) *x* に閾値を設け、*S*₃ を経由するルートを制限する

$$b_3(\boldsymbol{o}) = \begin{cases} \mathcal{N}[\boldsymbol{o}, \boldsymbol{\mu}_{31}, \boldsymbol{U}_{31}] & (\dot{x} > 0.2) \\ 0 & (o_1 \le 0.2) \end{cases}$$
(14)

ただし、本処理は統計的制約に厳密に従うものではないた め、今後修正が必要となる可能性がある.ここで、本処理 によって新たに発生し得る不具合としては、搬送の途中で 急激に速度を落とした場合のフェーズ識別の不可能性があ げられる.すなわち、装置を加速した後、一時的に処理 (2) の閾値 $\dot{x} = 0.2$ よりも低い速度まで減速し、その後再度加 速するような作業を行った場合、通るベきルートを式 (14) で制限されているために、妥当なルートが存在しない結果 となってしまう可能性がある.しかしながら、実際の作業 現場でそのような作業者動作が必要となるのは Enable ス イッチを離す必要があるような非常時であると考えられる ため、本研究では対象としない.以上の改善した Viterbi アルゴリズムを用いて、リアルタイムでの作業フェーズ識 別実験を行った.

Fig. 10: Experimental results of identifying phases with the proposed method

Fig. 11: Delays of phase identification timing in the cases of the proposed method vs. off-line backtrack processes

3. リアルタイムでの作業フェーズ識別実験

本節では,提案手法によるリアルタイムフェーズ識別 処理の安定性を確認する. 2.3 節で述べた通り,HMM に よるフェーズ識別に関して,式(9)を起点とするバックト ラック処理と,式(11)に式(12),(13),(14)の制限を課 したリアルタイム識別手法(提案手法)とで,その処理方 法の違いからフェーズ切替えのタイミングが異なる可能性 がある. そこで 3.1 節では,通常の搬送を想定した場合の, 両手法のフェーズ切替えタイミングの差について議論する. 次に 3.2 節では,緩急のある作業動作に対する提案手法の 応答を議論する.

3.1 通常の搬送作業に対する識別結果

5名の研究室外の被験者(20~25歳男性)による搬送作 業データに対して,提案手法によるリアルタイムフェーズ 識別の確認実験を行った.実験は,本学工学部倫理部会の 承認を得て行った(申請番号 21-15).実験環境は 2.2 節 (Fig. 3)と全く同様とし,搬送距離は X = 1.7m,速度条 件は条件 2(少し急ぎめの速度で作業しなさい)を指示し た.被験者毎に 30 試行,計 150 試行の作業実験を行った. 代表的な試行結果を Fig. 10 に示す.搬送における最大速 度値の平均と標準偏差は $0.79 \pm 5.5 \times 10^{-2}$ m/s であった. Fig. 11 に,オフラインでのバックトラック処理の場合に 対する,本実験結果に基づく提案手法の大域的なフェーズ 切替えタイミングの遅れの結果を示す.制御におけるサン

Fig. 12: Top view of the operation simulating with slow and steady speed mixed in a travel

Fig. 13: Experimental results of identifying phases with slow and steady speed mixed in each travel

プリング周期 T_{S_c} は 2 ms である. $S_4 \rightarrow S_5$ については提 案手法とバックトラック処理の場合とでタイミングの差が 大きい結果となったが、将来的に本手法を可変インピーダ ンス制御に応用することを前提とすれば、位置決めフェー ズ S4 と終了状態 S5 の機械インピーダンスは切替える必要 が無いため、実用上はこのタイミングの差は大きな問題と はならない.また, Fig. 10 では t = 1.7 s にて $S_1 \leftrightarrow S_2$ の切替えが、t = 6.0 s 以降に $S_4 \leftrightarrow S_5$ の頻繁な切替えが それぞれ発生しているが、上記の理由と同様に $S_1 \leftrightarrow S_2$ および $S_4 \leftrightarrow S_5$ では機械インピーダンスを切替える必要 が無いため、これらの挙動は問題とはならない.一方で、 Fig. 11 からわかるように、フェーズ・インピーダンス制 御にて重要な $S_2
ightarrow S_3$ および $S_3
ightarrow S_4$ のフェーズ切替 えについては、切替えタイミングの差とそのばらつきが小 さく、 $T_{Sc} = 2 \text{ ms}$ であることを考慮すれば、実用上はほ とんど問題にならない程度のタイミングの差となった. ま た,2.3節であげた不具合を示す挙動は全ての試行で観測 されず, $S_2 \rightarrow S_3 \rightarrow S_4$ の遷移は安定していた. 以上の結 果から、2.3 節における手法の改善は、リアルタイム識別 とバックトラック処理の結果をほぼ同等にするという意味 で妥当であることが確認され、通常の搬送作業に対して提 案手法が実用的に利用可能であることが確認された.

3.2 様々な搬送作業に対する識別の応答

次に,搬送作業において頻繁に起こり得て,かつフェー ズ識別上望ましくないと思われる入力に対する提案手法 の安定性を確認する目的で,速度に緩急を与えた搬送動作

Fig. 14: Delays of phase identification timing in the cases of the proposed method vs. off-line backtrack processes with slow and steady speed mixed in each travel

(以下,緩急動作)を上記と同じ被験者に対して行った.搬 送作業において, Fig. 12 のように足の初期位置を明示的 に定め、1 歩目と 2 歩目でそれぞれ X = 0.65, 0.85m 地点 のラインをつま先で踏むように指示(3歩目以降は歩容を 指定しない)することで、緩急動作を再現した.その他の 実験環境は 2.2 節と同様とし、速度条件は条件 2(少し急 ぎめの速度で作業しなさい)を指示して、被験者毎に 30 回,計150回の搬送実験を行った.代表的な試行結果を Fig. 13 に示す. 搬送における最大速度値の平均と標準偏 差は 0.73 ± 6.7 × 10⁻² m/s であった. Fig. 14 に, オフ ラインでのバックトラック処理の場合に対する,提案手法 の大域的なフェーズ切替えタイミングの遅れの結果を示す. 本実験においても,全ての試行で,2.3 節であげた不具合 を示す挙動は観測されなかった.また, Fig. 13 のように, 提案手法は,加速度極値を用いる手法 [1] では識別の難し い、速度、加速度の極値が複数現れるような作業に対して も,安定したフェーズ識別を達成できている.以上の結果 から、提案手法は、フェーズ識別上望ましくないと思われ る緩急動作に対しても、高い確度で安定したフェーズ切替 えを達成できることが確認された.また、全ての試行は、 速度の極小値が 2.3 節で定めた閾値 $\dot{x} = 0.2 \text{m/s}$ を下回ら ない試行となった. このことから, SAL における, 2.3 節 で設けた閾値の妥当性を確認できた.ただし、想定する作 業によって適当な閾値は異なるため,本手法を他の事例に 応用する場合は、想定作業に応じた閾値を検討する必要が ある.

4. 結論

本研究では、連続分布型 HMM をフェーズ・インピー ダンス制御アシスト手法における搬送作業フェーズ識別に 応用する手法を提案し、搬送作業における起動、移動、位 置決めフェーズのリアルタイム識別を行った. HMM にお ける隠れ状態を各作業フェーズに対応づけ、装置の速度、 加速度を観測系列ベクトルとして HMM モデルを定義し、 学習用の搬送作業データを用いて HMM モデルを構築し た.次に、Viterbi アルゴリズムにいくつかの制約を設け、 SAL におけるリアルタイムでのフェーズ識別アルゴリズム を整理した.最後に,被験者実験によって,提案手法によ る作業フェーズのリアルタイム識別が正常に動作すること を確認した.また,フェーズ識別上望ましくないと思われ る緩急動作に対しても,安定したフェーズ識別が可能であ ることが示された.これらの結果から,搬送作業のリアル タイムフェーズ識別において,高い確度で提案手法が機能 することが見込まれることが確認できた.今後は,本提案 手法を用いたフェーズ・インピーダンス制御の提案と,そ の評価を行う予定である.

参考文献

- 山田陽滋, 鴻巣仁司, 森園哲也, 梅谷陽二: "自動車組 立工程における搭載作業のためのスキルアシストの提 案", 日本機械学会論文集 (C編), Vo. 68, No. 666, pp. 161–168 (2002)
- [2] 渡邉真生,山田陽滋,秋山靖博,荒木崇志,澤田浩之,川尻治司,古屋敷潤:"隠れマルコフモデルを用いたスキルアシストシステムの搬送作業フェーズ識別"(印刷中),第 64 回自動制御連合講演会予稿集,(2021)
- [3] 鴻巣仁司,荒木勇,山田陽滋:"自動車組立作業支援 装置スキルアシストの実用化",日本ロボット学会誌, Vol. 22, No. 4, pp. 508–514 (2004)
 [4] 山田陽滋,大東治宜,酒井隆之,梅谷陽二:"人間/
- [4] 山田陽滋,大東治宜,酒井隆之,梅谷陽二:"人間/ ロボット共同搬送作業におてい作業者の意向を反映させるためのヒューマン・インターフェイスの提案:機 械力学,計測,自動制御",日本機械学会論文集 C編, Vo. 67, No. 656, pp. 1069–1076 (2001)
 [5] 武居直行,菊植亮,佐野明人,望山洋,澤田英明,藤
- [5] 武居直行,菊植亮,佐野明人,望山洋,澤田英明,藤本英雄:"位置決め作業アシストのための操作力依存可変ダンピング制御",日本ロボット学会誌, Vol. 25, No. 2, pp. 306–313 (2007)
- [6] R. Ikeura and H. Inooka: "Variable impedance control of a robot for cooperation with a human", Proceedings of 1995 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 3097–3102 (1995)
- [7] 関弘和,高橋一樹,多田隈進: "動作モード切換えに 基づく人間協調型ロボットの軌道制御法",電気学会 論文誌 D (産業応用部門誌), Vol. 126, No. 12, pp. 1682–1689 (2006)
- [8] 奥田裕之, 早川聡一郎, 鈴木達也, 土田縫夫: "人間 行動のハイブリッドシステムモデルに基づいた人間 一機械協調型ロボットシステムの切替型制御器設計", 電気学会論文誌 D (産業応用部門誌), Vol. 128, No. 6, pp. 810–818 (2008)
 [9] T. Flash, N. Hogan: "The coordination of arm
- [9] T. Flash, N. Hogan: "The coordination of arm movements: an experimentally confirmed mathematical model", Journal of neuroscience, Vol. 5, No. 7, pp. 1688–1703 (1985)
 [10] 南場友里,打田正樹,早川聡一郎,奥田裕之,鈴木達
- [10] 南場友里,打田正樹,早川聡一郎,奥田裕之,鈴木達 也,土田縫夫:"人間-機械協調型ロボットにおける人 間行動モデルと隠れマルコフモデルを用いた支援制 御",(人間機械協調);ロボティクス・メカトロニクス 講演会講演概要集,No. 08-4, 1A1-D13 (2008)
- [11] L. Rabiner and B. Juang: "An introduction to hidden Markov models", *IEEE ASSP MAGAZINE*, Vol. 3, No. 1, pp. 4–16 (1986)
- [12] L. Rabiner and B. Juang (原著),古井貞熙 (監訳): 音声認識の基礎(下), pp. 102–187, NTT アドバン ステクノロジ株式会社,東京 (1995)